COMMENTS ON VALUATIONS ASSOCIATED TO SYSTEMS OF VERTICES/EDGES AND THE MAIN THEOREM OF POP-STIX

Shinichi Mochizuki

Updated May 2, 2011

Let k be an arbitrary complete discrete valuation field of mixed characteristic whose residue characteristic we denote by p, \bar{k} an algebraic closure of $k, G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\bar{k}/k), \Sigma$ a set of primes that contains a prime $l \neq p, X$ a proper hyperbolic curve over k. Suppose, further, that k is *l*-cyclotomically full, i.e., that the image of the *l*-adic cyclotomic character $G_k \to \mathbb{Z}_l^{\times}$ is open in \mathbb{Z}_l^{\times} . Write

$$\Pi_X \twoheadrightarrow \Pi_X^{(\Sigma)}$$

for the geometrically pro- Σ quotient of the étale fundamental group Π_X of X. Thus, we have a natural surjection $\Pi_X^{(\Sigma)} \twoheadrightarrow G_k$. Let

$$\dots \rightarrow X_{i+1} \rightarrow X_i \rightarrow \dots$$

[where *i* ranges over the positive integers] be a cofinal system of *finite étale connected* Galois coverings of X with stable reduction arising from open subgroups of $\Pi_X^{(\Sigma)}$ and

$$s: G_k \to \Pi_X^{(\Sigma)}$$

a section of $\Pi_X^{(\Sigma)} \to G_k$. Then in the "Comments on a Combinatorial Version of the Section Conjecture and the Main Theorem of Pop-Stix" dated March 3, 2011 (cf. [CbSC], (5)), we showed that

 $(*^{v/e})$ [after possibly passing to a cofinal subsystem of the given system of coverings] there exists *either* a [not necessarily unique] system of vertices

$$\ldots \rightsquigarrow v_{i+1} \rightsquigarrow v_i \rightsquigarrow \ldots$$

or a [not necessarily unique] system of edges

$$\ldots \rightsquigarrow e_{i+1} \rightsquigarrow e_i \rightsquigarrow \ldots$$

— i.e., each v_i (respectively, e_i) is an irreducible component (respectively, node) of the special fiber of the stable model \mathcal{X}_i of X_i that is *fixed* by the natural action of the image Im(s) of the section s; the image of the

SHINICHI MOCHIZUKI

irreducible component v_{i+1} (respectively, node e_{i+1}) in \mathcal{X}_i is contained in the irreducible component v_i (respectively, node e_i).

In the present note, we verify (cf. (1), (2) below), by means of a quite elementary argument in scheme theory/commutative algebra, that

(*^{val}) such a system of vertices or edges determines a system of valuations of the function fields K_i of the X_i that are fixed by the natural action of Im(s).

In particular, we obtain a proof of the main theorem of Pop-Stix (cf. [PS]) by means of elementary graph-theoretic and scheme-/ring-theoretic considerations, without resorting to the use of highly nontrivial arithmetic results such as Tamagawa's "resolution of nonsingularities" [i.e., the main result of [Tama]]. Here, we recall that this result of [Tama] depends, in an essential way, on highly arithmetic arguments that require one to take Σ to be the set of all primes, as well as on relatively deep wild ramification properties of p-power coverings of X. In particular, the essential role played by this result in the proof of [PS] has the effect of portraying the phenomenon discussed in the main theorem of [PS] as being a consequence of such deep arithmetic considerations. In fact, however, the arguments of the present note imply that

the essential phenomenon discussed in the main theorem of [PS] is [not "arithmetic" or "*p*-adic", but rather] "*l*-adic" and "combinatorial" in nature and may be obtained as a consequence of quite elementary considerations concerning finite group actions on graphs and scheme theory/commutative algebra.

(1) Suppose that one has a system of vertices $\{v_i\}$ as in $(*^{v/e})$. If [after possibly passing to a cofinal subsystem of the given system of coverings] each v_{i+1} maps quasi-finitely to v_i , then the system of valuations associated to the v_i already yields a system of valuations as desired. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that v_{i+1} maps to a closed point x_i of v_i . If [after possibly passing to a cofinal subsystem of the given system of coverings] the x_i are all nodes, then we obtain a system of edges $\{e_i\}$ as in $(*^{v/e})$; this situation will be dealt with in (2) below. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that each x_i is a smooth point. In particular, the local ring R_i of \mathcal{X}_i at x_i is regular of dimension 2, hence a UFD. Write

$$\operatorname{ord}_i: K_i^{\times} \to \mathbb{Q}$$

for the valuation associated to v_i , normalized so as to restrict to a fixed [i.e., independent of i], given valuation on k. Then it follows immediately from the definition of x_i , together with the fact that R_i is a UFD, that we have

$$\operatorname{ord}_{i'}(f) \ge \operatorname{ord}_i(f) \ge 0$$

2

for any nonzero $f \in R_i \subseteq K_i$, $j' \ge j \ge i$. [Here, we think of the various K_i as being related to one another via the natural inclusions $K_i \subseteq \ldots \subseteq K_j \subseteq \ldots \subseteq K_{j'}$.] Next, let us observe that it follows immediately from the fact that each $\operatorname{ord}_j(-)$ is a *valuation* that, if we set $\operatorname{ord}_j(0) \stackrel{\text{def}}{=} +\infty$, then the subset

$$R_i \supseteq I_i \stackrel{\text{def}}{=} \{f \in R_i \mid \lim_{j \to \infty} \operatorname{ord}_j(f) = +\infty\}$$

is, in fact, a prime ideal of R_i whose intersection with the ring of integers $\mathcal{O}_k \subseteq R_i$ of k is equal to $\{0\}$. In particular, the height of I_i is ≤ 1 . If [after possibly passing to a cofinal subsystem of the given system of coverings] the I_i are all of height 1, then it follows immediately that I_i determines a closed point ξ_i of X_i , and that the system of valuations associated to the ξ_i yields a system of valuations as desired [indeed, of the "ideal type", from the point of view of the original Section Conjecture!]. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that each I_i is of height 0, hence equal to $\{0\}$. But this implies that, for $f \in K_i^{\times}$, the quantity

$$\operatorname{ord}_{\infty}(f) \stackrel{\text{def}}{=} \lim_{j \to \infty} \operatorname{ord}_{j}(f) \in \mathbb{R}$$

is well-defined. Moreover, one verifies immediately that $\operatorname{ord}_{\infty}(-)$ determines a valuation on K_i that is fixed by the action of $\operatorname{Im}(s)$. In particular, one obtains a system of valuations as desired.

(2) Suppose that one has a system of edges $\{e_i\}$ as in $(*^{v/e})$. Write \mathcal{X}_i^{\log} for the regular log scheme whose underlying scheme is \mathcal{X} and whose interior is the generic fiber $X_i \subseteq \mathcal{X}_i$. Thus, the characteristic of the log structure of \mathcal{X}_i^{\log} at x_i determines — by tensoring the groupification of the characteristic with \mathbb{R} — a 2-dimensional real vector space, whose dual we denote by M_i . Thus, M_i is equipped with a natural positive rational structure P_i [i.e., a submonoid isomorphic to $\mathbb{Q}_{>0} \oplus \mathbb{Q}_{>0}$ that generates M_i as a real vector space. [Put another way, M_i is the sort of real vector space that appears in discussions of *toric varieties*.] The natural morphism $\mathcal{X}_{i+1}^{\log} \to \mathcal{X}_{i}^{\log}$ induces an \mathbb{R} -linear map of vector spaces $M_{i+1} \to M_i$ of rank ≥ 1 that maps P_{i+1} into P_i . Write $\overline{P}_i \subseteq M_i$ for the closure of P_i in M_i . Let us refer to as a \overline{P} -ray of M_i a ray of M_i emanating from the origin that is contained in \overline{P}_i . Now it follows immediately from the *compactness* of the space of \overline{P} -rays of M_i that [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume that there exists a *compatible system* $\{\lambda_i\}$ of *P*-rays of the M_i which are, moreover, fixed by the action of Im(s). Suppose that [after possibly passing to a cofinal subsystem of the given system of coverings] each λ_i is rational [i.e., generated by an element of P_i]. Then λ_i corresponds to an *irreducible component* v_i of a suitable blow-up of \mathcal{X}_i at e_i ; one may construct these blow-ups so that v_{i+1} maps into v_i . If [after possibly passing to a cofinal subsystem of the given system of coverings] each v_{i+1} maps quasi-finitely to v_i , then the system of valuations associated to the v_i already yields a system of valuations as desired. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that v_{i+1} maps to a *closed point* x_i of v_i ; moreover, it follows immediately from the fact that the λ_i form a compatible system that each

SHINICHI MOCHIZUKI

 x_i is a smooth point. Thus, one may construct either a system of closed points ξ_i of X_i or a system of "limit valuations $\operatorname{ord}_{\infty}(-)$ " as in (1); this yields a system of valuations as desired. This completes the proof in the case where the λ_i are rational. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that each λ_i is irrational. But then it is well-known that each λ_i determines a valuation on K_i ; the compatibility of these valuations as one varies *i* follows immediately from the compatibility of the λ_i . Thus, one obtains a system of valuations as desired.

(3) The present note benefited from discussions with Fumiharu Kato in November 2010.

Bibliography

- [CbSC] S. Mochizuki, Comments on a Combinatorial Version of the Section Conjecture and the Main Theorem of Pop-Stix, manuscript dated March 3, 2011.
 - [PS] F. Pop and J. Stix, Arithmetic in the fundamental group of a p-adic curve On the p-adic section conjecture for curves, preprint, Philadelphia-Heidelberg-Cambridge, August 2010.
- [Tama] A. Tamagawa, Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), pp. 1291-1336.