COMMENTS ON VALUATIONS ASSOCIATED TO SYSTEMS OF VERTICES/EDGES AND THE MAIN THEOREM OF POP-STIX

Shinichi Mochizuki

Updated May 2, 2011

Let k be an arbitrary complete discrete valuation field of mixed characteristic whose residue characteristic we denote by p, \bar{k} an algebraic closure of $k, G_{k} \stackrel{\text { def }}{=}$ $\operatorname{Gal}(\bar{k} / k), \Sigma$ a set of primes that contains a prime $l \neq p, X$ a proper hyperbolic curve over k. Suppose, further, that k is l-cyclotomically full, i.e., that the image of the l-adic cyclotomic character $G_{k} \rightarrow \mathbb{Z}_{l}^{\times}$is open in \mathbb{Z}_{l}^{\times}. Write

$$
\Pi_{X} \rightarrow \Pi_{X}^{(\Sigma)}
$$

for the geometrically pro- Σ quotient of the étale fundamental group Π_{X} of X. Thus, we have a natural surjection $\Pi_{X}^{(\Sigma)} \rightarrow G_{k}$. Let

$$
\ldots \rightarrow X_{i+1} \rightarrow X_{i} \rightarrow \ldots
$$

[where i ranges over the positive integers] be a cofinal system of finite étale connected Galois coverings of X with stable reduction arising from open subgroups of $\Pi_{X}^{(\Sigma)}$ and

$$
s: G_{k} \rightarrow \Pi_{X}^{(\Sigma)}
$$

a section of $\Pi_{X}^{(\Sigma)} \rightarrow G_{k}$. Then in the "Comments on a Combinatorial Version of the Section Conjecture and the Main Theorem of Pop-Stix" dated March 3, 2011 (cf. [CbSC], (5)), we showed that
$\left(*^{v / e}\right)$ [after possibly passing to a cofinal subsystem of the given system of coverings] there exists either a [not necessarily unique] system of vertices

$$
\ldots \rightsquigarrow v_{i+1} \rightsquigarrow v_{i} \rightsquigarrow \ldots
$$

or a [not necessarily unique] system of edges

$$
\ldots \rightsquigarrow e_{i+1} \rightsquigarrow e_{i} \rightsquigarrow \ldots
$$

- i.e., each v_{i} (respectively, e_{i}) is an irreducible component (respectively, node) of the special fiber of the stable model \mathcal{X}_{i} of X_{i} that is fixed by the natural action of the image $\operatorname{Im}(s)$ of the section s; the image of the
irreducible component v_{i+1} (respectively, node e_{i+1}) in \mathcal{X}_{i} is contained in the irreducible component v_{i} (respectively, node e_{i}).

In the present note, we verify (cf. (1), (2) below), by means of a quite elementary argument in scheme theory/commutative algebra, that
$\left(*^{\mathrm{val}}\right)$ such a system of vertices or edges determines a system of valuations of the function fields K_{i} of the X_{i} that are fixed by the natural action of $\operatorname{Im}(s)$.

In particular, we obtain a proof of the main theorem of Pop-Stix (cf. [PS]) by means of elementary graph-theoretic and scheme-/ring-theoretic considerations, without resorting to the use of highly nontrivial arithmetic results such as Tamagawa's "resolution of nonsingularities" [i.e., the main result of [Tama]]. Here, we recall that this result of [Tama] depends, in an essential way, on highly arithmetic arguments that require one to take Σ to be the set of all primes, as well as on relatively deep wild ramification properties of p-power coverings of X. In particular, the essential role played by this result in the proof of [PS] has the effect of portraying the phenomenon discussed in the main theorem of [PS] as being a consequence of such deep arithmetic considerations. In fact, however, the arguments of the present note imply that
the essential phenomenon discussed in the main theorem of [PS] is [not "arithmetic" or " p-adic", but rather] " q-adic" and "combinatorial" in nature and may be obtained as a consequence of quite elementary considerations concerning finite group actions on graphs and scheme theory/commutative algebra.
(1) Suppose that one has a system of vertices $\left\{v_{i}\right\}$ as in $\left(*^{v / e}\right)$. If [after possibly passing to a cofinal subsystem of the given system of coverings] each v_{i+1} maps quasi-finitely to v_{i}, then the system of valuations associated to the v_{i} already yields a system of valuations as desired. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that v_{i+1} maps to a closed point x_{i} of v_{i}. If [after possibly passing to a cofinal subsystem of the given system of coverings] the x_{i} are all nodes, then we obtain a system of edges $\left\{e_{i}\right\}$ as in $\left(*^{v / e}\right)$; this situation will be dealt with in (2) below. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that each x_{i} is a smooth point. In particular, the local ring R_{i} of \mathcal{X}_{i} at x_{i} is regular of dimension 2 , hence a UFD. Write

$$
\operatorname{ord}_{i}: K_{i}^{\times} \rightarrow \mathbb{Q}
$$

for the valuation associated to v_{i}, normalized so as to restrict to a fixed [i.e., independent of i], given valuation on k. Then it follows immediately from the definition of x_{i}, together with the fact that R_{i} is a $U F D$, that we have

$$
\operatorname{ord}_{j^{\prime}}(f) \geq \operatorname{ord}_{j}(f) \geq 0
$$

for any nonzero $f \in R_{i} \subseteq K_{i}, j^{\prime} \geq j \geq i$. [Here, we think of the various K_{i} as being related to one another via the natural inclusions $\left.K_{i} \subseteq \ldots \subseteq K_{j} \subseteq \ldots \subseteq K_{j^{\prime}}.\right]$ Next, let us observe that it follows immediately from the fact that each $\operatorname{ord}_{j}(-)$ is a valuation that, if we set $\operatorname{ord}_{j}(0) \stackrel{\text { def }}{=}+\infty$, then the subset

$$
R_{i} \supseteq I_{i} \stackrel{\text { def }}{=}\left\{f \in R_{i} \mid \lim _{j \rightarrow \infty} \operatorname{ord}_{j}(f)=+\infty\right\}
$$

is, in fact, a prime ideal of R_{i} whose intersection with the ring of integers $\mathcal{O}_{k} \subseteq R_{i}$ of k is equal to $\{0\}$. In particular, the height of I_{i} is ≤ 1. If [after possibly passing to a cofinal subsystem of the given system of coverings] the I_{i} are all of height 1, then it follows immediately that I_{i} determines a closed point ξ_{i} of X_{i}, and that the system of valuations associated to the ξ_{i} yields a system of valuations as desired [indeed, of the "ideal type", from the point of view of the original Section Conjecture!]. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that each I_{i} is of height 0 , hence equal to $\{0\}$. But this implies that, for $f \in K_{i}^{\times}$, the quantity

$$
\operatorname{ord}_{\infty}(f) \stackrel{\text { def }}{=} \lim _{j \rightarrow \infty} \operatorname{ord}_{j}(f) \in \mathbb{R}
$$

is well-defined. Moreover, one verifies immediately that $\operatorname{ord}_{\infty}(-)$ determines a valuation on K_{i} that is fixed by the action of $\operatorname{Im}(s)$. In particular, one obtains a system of valuations as desired.
(2) Suppose that one has a system of edges $\left\{e_{i}\right\}$ as in $\left(*^{v / e}\right)$. Write $\mathcal{X}_{i}^{\log }$ for the regular log scheme whose underlying scheme is \mathcal{X} and whose interior is the generic fiber $X_{i} \subseteq \mathcal{X}_{i}$. Thus, the characteristic of the \log structure of $\mathcal{X}_{i}^{\log }$ at x_{i} determines - by tensoring the groupification of the characteristic with \mathbb{R} - a 2-dimensional real vector space, whose dual we denote by M_{i}. Thus, M_{i} is equipped with a natural positive rational structure P_{i} [i.e., a submonoid isomorphic to $\mathbb{Q} \geq 0 \oplus \mathbb{Q} \geq 0$ that generates M_{i} as a real vector space]. [Put another way, M_{i} is the sort of real vector space that appears in discussions of toric varieties.] The natural morphism $\mathcal{X}_{i+1}^{\log } \rightarrow \mathcal{X}_{i}^{\log }$ induces an \mathbb{R}-linear map of vector spaces $M_{i+1} \rightarrow M_{i}$ of rank ≥ 1 that maps P_{i+1} into P_{i}. Write $\bar{P}_{i} \subseteq M_{i}$ for the closure of P_{i} in M_{i}. Let us refer to as a \bar{P}-ray of M_{i} a ray of M_{i} emanating from the origin that is contained in \bar{P}_{i}. Now it follows immediately from the compactness of the space of \bar{P}-rays of M_{i} that [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume that there exists a compatible system $\left\{\lambda_{i}\right\}$ of \bar{P}-rays of the M_{i} which are, moreover, fixed by the action of $\operatorname{Im}(s)$. Suppose that [after possibly passing to a cofinal subsystem of the given system of coverings] each λ_{i} is rational [i.e., generated by an element of P_{i}]. Then λ_{i} corresponds to an irreducible component v_{i} of a suitable blow-up of \mathcal{X}_{i} at e_{i}; one may construct these blow-ups so that v_{i+1} maps into v_{i}. If [after possibly passing to a cofinal subsystem of the given system of coverings] each v_{i+1} maps quasi-finitely to v_{i}, then the system of valuations associated to the v_{i} already yields a system of valuations as desired. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that v_{i+1} maps to a closed point x_{i} of v_{i}; moreover, it follows immediately from the fact that the λ_{i} form a compatible system that each
x_{i} is a smooth point. Thus, one may construct either a system of closed points ξ_{i} of X_{i} or a system of "limit valuations $\operatorname{ord}_{\infty}(-)$ " as in (1); this yields a system of valuations as desired. This completes the proof in the case where the λ_{i} are rational. Thus, [after possibly passing to a cofinal subsystem of the given system of coverings] we may assume without loss of generality that each λ_{i} is irrational. But then it is well-known that each λ_{i} determines a valuation on K_{i}; the compatibility of these valuations as one varies i follows immediately from the compatibility of the λ_{i}. Thus, one obtains a system of valuations as desired.
(3) The present note benefited from discussions with Fumiharu Kato in November 2010.

Bibliography

[CbSC] S. Mochizuki, Comments on a Combinatorial Version of the Section Conjecture and the Main Theorem of Pop-Stix, manuscript dated March 3, 2011.
[PS] F. Pop and J. Stix, Arithmetic in the fundamental group of a p-adic curve On the p-adic section conjecture for curves, preprint, Philadelphia-HeidelbergCambridge, August 2010.
[Tama] A. Tamagawa, Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), pp. 1291-1336.

